
The Earth’s Energy Balance

There are three modes of energy transfer

• Conduction – molecular interactions
• Convection – fluid motion
• Radiation  - self propagating

Fundamental Equations

All radiation propagates at a constant speed through a vacum.  This is the
speed of light (c) and is equal to 3 x 108 m sec-1.

Where υ is the frequency and λ is the wavelength.

Studying the particle nature electromagnetic radiation, it was determined
that the energy of an individual photon is quantized, that is to say is it has
can have specific values (often referred to as states).  The energy of a photon
is:

Where n is an integer (1,2,3… ) and h is Plank’s constant (6.626x10-34 J sec).
From the above equation it is possible to see that the energy of a photon is
inversely related to its wavelength.

All objects with absolute temperatures above 0° K emit radiation

In ~1900, Max Planck, determined the spectral emmittance (Sλ) of energy,
that is too say how much energy is emitted at a specific wavelength from an
object with a certain absolute temperature (T in Kelvins)
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Where k is the Boltzman constant (1.3805x10-23 JK-1).

If we differentiate the formula above, and then
set the differential to zero, we can find the
wavelength of maximum emission.
Differentiation, simply yields the slope at each
point on the Planck curve and at the point of
maximum emission, the slope will go to zero,
that is at this maximum point, the slope is
flat.  This differentiation yields:

And is know as Wein’s Displacement Law.  This law says that the higher the
temperature of an object, the shorter the wavelength of maximum emmission.
The equation can be rearranged to determine the color temperature (Tc).

For an example let us use the sun.  The sun has a maximum wavelength of
emission of 0.475 µm or 0.000000475 m.  This is in the blue portion of the
spectra.  This leads to a color temperature of approximately 6100° K.  Now let
us compare this to a standard incandescent light bulb.  The temperature of
the filament of a standard light bulb is much cooler than the sun’s color
temperature (~2170C).  Using Wein’s Displacement Law, the wavelength of
maximum emission would be 1.3 µm).

One very important property is not how much energy a body emits at a
certain wavelength, but how much energy it emits at all wavelengths.  To
determine this it is necessary to integrate the Planck function.  Integration in
this case means determining the area that lies under the curve in Figure 1.
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The above equation is known as the Stefan-Boltzman law and σ is known
appropriately as the Stefan-Boltzman constant (5.67x10-8 W m-2 K-4).

Until now we have assumed that any body with an absolute temperature
above 0° K is emitting radiation perfectly.  Such objects are known as
blackbodies.  However, most objects are not perfect emitters, but in fact emit
radiation with less than 100% efficiency.  These objects are known as
graybodies.  To account for this behavior a factor known as emmissivity (ε) is
added to the Stefan-Boltzman equation.  ε is a dimensionless, and has a value
between 0 and 1.  In fact, for many objects, ε will vary as a function of
wavelength, that is to say that objects emit with varying efficiency as a
function of wavelength, just as their reflectance varies as a function of
wavelength.  Thus the Stefan-Bolzman relationship for graybodies is:

Let us take a look at the possible fate of photons… They can be…
• Absorbed (A)
• Reflected (R)
• Emitted (E)
• And A + R + E = 1

As is shown in Figure 2 below, E = A, which is known as Kirkoff’s law.
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Solar Radiation

Let us get a little more practical… .

We all know that the Sun emits energy, and now know that the amount of
energy that it emits is a function of its temperature.  The amount of energy
the earth receives at the top of the atmosphere from the sun is known as the
solar constant.  This energy that the earth receives from the sun is the major
source of energy running the earth system.  Radioactive decay within the
earth is the other source of energy, but is of a much smaller magnitude.

In terms of radiative emission, let us consider the sun with an equivilant
blackbody temperature of 5770° K.  According to the Stefan-Bolzman
Equation, the amount of energy emmitted from the sun is

Note that this is the amount of energy emitted from every square meter of the
sun.  To find the total amount of energy emitted from the sun we need to
multiply this value by the total surface area of the sun (4πrsun2) where the
radius of the sun is 7x108 m:

This energy propagates through space, however as the distance away from
the sun increases, the amount of energy incident on a square meter area will
drop off proportionally to the square of the distance from the sun to the earth
is 1.5x1011m.  You might remember this relationship from high school
physics.  Thus by the time the energy from the sun reaches the earth, the
amount incident on a square meter area is:

If we look at Figure 3, we can see how good of a job we actually did.  These
measurements of the solar constant were made by and instrument aboard the
ERBE instrument.
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Radiation Balance of the Earth

The net radiation balance of the surface of the earth (Q*) is the sum of 4
components:

Where K is the solar (shortwave radiation) from the sun and L is longwave
radiation emitted by the atmosphere and the ground.  Shortwave radiation
refers to radiation at wavelengths between say 0.2 and 3.0 µm (some people
extend the range out to ~10µm).  This is energy that had its origins with the
sun.  Longwave radiation is the radiation that is emitted by the earth and
atmosphere.  Because of their lower temperatures the wavelength of
maximum emittance is longer (remember Wien’s Displacement Law).  Thus
longwave radiation refers to the 3-100 µm.  The arrows indicate the direction
the radiation is propagating (down and up).  Downward fluxes are considered
positive, upward fluxes, negative.
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Let us consider the earth as a solitary blackbody in space that is in radiative
equilibrium with the sun, that is to say, the amount of energy it admits is
exactly equal to the amount it receives from the sun.  This means that it is
receiving 1367 Wm-2 of energy from the sun (Kdown).  Since it is a blackbody
there is no reflection (Kup = 0).  Likewise since there is no atmosphere, there
is longwave radiation directed toward the ground (Ldown=0).  Thus:

Solving for T (the radiative equilbrium temperature), we get 394°K or 121°C.

Also, Albedo can be defined as:

Now let us make a 0-dimensional energy balance model of the earth.
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Let us assume that the Ground and the Atmosphere have the following
properties:

Shortwave Longwave
Ground (g) Reflection α 0

Absorption (1-α) 1
Transmission 0 0

Atmosphere (a) Reflection 0 0
Absorption 0 εa
Transmission 1 εa

With these quantities, the following equations hold:

At the top of the Atmosphere:

At the ground Surface:

Solving these equations simultaneously we achieve the following:

Before we ‘run’ our zero-dimensional energy balance model of the earth (the
above equation), we need to determine the average amount of energy the
earth receives from the sun over the year.  We know the solar constant is
1367 W m-2.  However, at any one time the sun can only illuminates a circle
the radius of the earth (πrearth2).  The total area of a sphere with the radius of
the earth is (4πrearth2).  Therefore the average annual amount of energy the
earth energy the earth receives from the sun is 1367 / 4 = 341.75 W m-2.
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Now let us ‘paramaterize’ our energy balance model.

Case 1: Atmosphere containing only nitrogen and oxygen (e.g. no greenhouse
gases)

• α=0.3
• εa = 0.0

The ground temperature Tg = 255° K = -18° C.  As we can see, without the
warming effect of greenhouse gases our world would be a very cold place.

Case 2: ‘Real Earth’
• α=0.3
• εa = 0.75

The ground temperature Tg = 287° K = 14° C.  The effect of greenhouse gases
makes our planet livable.

Case 3: ‘Greenhouse world’
• α=0.3
• εa = 0.8

The ground temperature Tg = 290° K = 17° C.  This is the ‘so-called’
greenhouse effect – my new orchids would love it!

Case 3: ‘Ice-covered world’
• α=0.8
• εa = 0.75

The ground temperature Tg = 210° K = -63° C.  Brrr!!!  We can see that
changing albedo is important too.

Convective processes

In addition self-propagating radiation, the earth’s land and ocean surfaces
exchange energy with the atmosphere through convective processes.  We will
not consider the physics of these processes in the detail that we covered
radiative processes, because the physics are more complicated and
fundamental processes of turbulent transfer are not as well understood.  I
should not that these fluxes occur in what is known as the boundary layer.

There are two major convective processes:

1. Sensible Heat Flux (Qh)

Sensible heat flux occurs if the addition or subtraction of energy from a body
is sensed as a change in temperature of that body.



2. Latent Heat Flux (QE)

Latent heat transfer occurs if the addition or subtraction of energy from a
body enlists a change of state of water (evaporation - liquid to a vapor,
condensation – vapor to liquid, or sublimation – solid to vapor).  The reason
water is so important is that water requires/releases a huge amount of energy
when it undergoes a change of state).

Both sensible and latent heat fluxes depend on the gradients of temperature
or amount of water in the atmosphere just above the ground or water surface.
The fluxes are also directly proportional to the wind speed.


